翻訳と辞書
Words near each other
・ Extension and contraction of ideals
・ Extension bell
・ Extension by definitions
・ Extension conflict
・ Extension cord
・ Extension Ensemble
・ Extension Formation
・ Extension Gunners
・ Extension Language Kit
・ Extension mechanisms for DNS
・ Extension method
・ Extension neglect
・ Extension neural network
・ Extension of a Man
・ Extension of a polyhedron
Extension of a topological group
・ Extension of the Wish
・ Extension of University Education Act, 1959
・ Extension Poly(A) Test
・ Extension Reef
・ Extension Scouting
・ Extension Service
・ Extension studies
・ Extension topology
・ Extension transference
・ Extension tube
・ Extension, British Columbia
・ Extension, Louisiana
・ Extensional context
・ Extensional definition


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Extension of a topological group : ウィキペディア英語版
Extension of a topological group
In mathematics, more specifically in topological groups, an extension of topological groups, or a topological extension, is a short exact sequence 0\to H\stackrel X \stackrelG\to 0 where H, X and G are topological groups and i and \pi are continuous homomorphisms which are also open onto their images. Every extension of topological group is therefore a group extension
==Classification of extensions of topological groups==
We say that the topological extensions
:0 \rightarrow H\stackrel X\stackrel G\rightarrow 0
and
:0\to H\stackrel X'\stackrel G\rightarrow 0
are equivalent (or congruent) if there exists a topological isomorphism T: X\to X' making commutative the diagram of Figure 1.
We say that the topological extension
:0 \rightarrow H\stackrel X\stackrel G\rightarrow 0
is a ''split extension'' (or splits) if it is equivalent to the trivial extension
:0 \rightarrow H\stackrel H\times G\stackrel G\rightarrow 0
where i_H: H\to H\times G is the natural inclusion over the first factor and \pi_G: H\times G\to G is the natural projection over the second factor.
It is easy to prove that the topological extension 0 \rightarrow H\stackrel X\stackrel G\rightarrow 0 splits if and only if there is a continuous homomorphism R: X \rightarrow H such that R\circ i is the identity map on H
Note that the topological extension 0 \rightarrow H\stackrel X\stackrel G\rightarrow 0 splits if and only if the subgroup i(H) is a topological direct summand of X

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Extension of a topological group」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.